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EFFECT OF EDDY DIFFUSIVITY ON WIND-DRIVEN CURRENTS

IN A TWO-LAYER STRATIFIED LAKE

by Richard T. Gedney, W. Lick, * and Frank B. Molls

Lewis Research Center

SUMMARY

The steady-state wind-driven circulation is numerically calculated in a rectangular

stratified lake. The lake is composed of two layers (an upper, warmer layer termed

the epilimnion and a lower, cooler layer termed the hypolimnion) having uniform but

unequal densities and eddy diffusivities. The position of the interface between the two

layers (the thermocline) and the three-dimensional velocities in both layers are calcu-

lated using the shallow lake equations of P. Welander. Continuity of velocity and shear

stress are maintained across the thermocline.

Because the values of the eddy diffusivities in the layers are not well known, re-

sults for hypolimnetic diffusivities from 1.05 to 16. 8 square centimeters per second and

epilimnetic diffusivities from 16. 8 to 67. 2 square centimeters per second are given.

In the examples calculated the length of the lake is of order 100 kilometers, the wind

velocity is 5.2 meters per second, and the temperature difference between the epilimnion

and hypolimnion is 18 C. The results show that, as the hypolimnetic diffusivity is

increased, the thermocline tilt and hypolimnetic velocities increase. The effect of the

other variables (wind stress, density, basin length, and mean thermocline depth) are

easily discerned from the analysis. It is shown that the solution for a rectangular basin

is not strongly dependent upon the length to width ratio of the basin. Therefore, most

of the results are given for a square basin.

INTRODUCTION

As part of the present day analysis of the effects of pollution on large lakes, models

are being developed which will attempt to predict the lake’s chemical and biological

* Professor of Geophysics and Engineering, Case Western Reserve University,

Cleveland, Ohio. Professor Lick’s work was supported by the National Science Founda-

tion.
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Figure 1. Typical stratified lake temperature profiles.

changes as a function of the pollution added to the system. Development of these models

requires knowledge of the currents during the summer when the lake water has a very

definite vertical temperature stratification.

A typical thermally stratified lake, such as the one described in figure 1, can usu-

ally be divided into three zones: the upper region called the epilimnion, the middle re-

gion, where the temperature gradient is steepest, called the metalimnion, and the bot-

tom region called the hypolimnion. The thermocline is defined as the surface of
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maximum rate of decrease in temperature. As is well known, the stable temperature

gradient shown in figure 1 suppresses turbulence generated by the wind shear in the sur-

face layers of the lake so that near the thermocline the turbulence intensity is greatly

reduced from that encountered at the surface. This is well illustrated by the plot (fig. 2)

of eddy diffusivity for heat Vrr as calculated by Sundaram, Esterbrook, Piech, and

Rudinger (ref. 1) from the data which was used to construct the figure l(a) temperature

curve, m general, it has been found that the eddy diffusivities for heat and momentum

under arbitrary thermal stratification conditions are a function of a stability parameter.
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Figure 2. Calculatioh of vertical eddy diffusivity ih
Cayuga Lake for period between August 14th and
August 27th, 1968. (Data taken from ref. 1.)

One of the more commonly used forms of the stability parameter is the Richardson num-

ber Ri which is defined as

Ri ^g-OT^Z).
(9U/3Z)2

where a is the coefficient of volumetric expansion of water, g is the acceleration due

to gravity, U is the horizontal velocity, Z is the vertical coordinate increasing upward,
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and T is the temperature. Under conditions of neutral stability, Ri 0, the eddy dif-

fusivity of momentum and heat are generally assumed to be the same, that is, y,, v-n.
The dependence of v-^, and v-rr on Ri has to date only been determined empirically.

Because this empiricism has not been well established for v-,., the exact dependence of

the turbulent Prandtl number Vfjr/v-n, on stability is a point of some controversy. It is

generally believed for lake models (Hutchinson, ref. 2) that v-Mr/v-ci increases with in-

creasing Ri. In any event, in the upper part of the epilimnion where the temperature

gradient is small and as a result Ri is small, the ratio v-^/v-n will be close to 1. 0.

For the balance of the lake, Vyr should qualitatively have a similar profile as that

shown in figure 2.

The plots in figures 1 and 2 are based on average temperatures over a 1-week

period during which time-dependent seiche currents existed. The internal waves asso-

ciated with the seiche currents generate turbulence which diffuses the sharp temperature

gradient in the neighborhood of the thermocline. During a period of steady winds, the

temperature gradients in the hypolimnion and epilimnion and the thickness of the meta-

limnion are generally much less than shown in the figures.

The results just discussed for the temperature and eddy diffusivities suggest that

the lake stratification may be modeled by considering the lake to be made up of two

homogeneous layers each with different densities and eddy diffusivities with the inter-

face between the two layers being located at the thermocline. At the interface, velocity

and shear stress should be continuous. It is felt that this two-layer model which will

be analyzed here will give a qualitative understanding of the dependence of stratified

lake currents on the value of the governing parameters in the epilimnion and hypolimnion.

A model in which the density and eddy diffusivities vary continuously with the vertical

coordinate can be analyzed in the future when the dependence of v^r on stability is

better established. Since the two-layer model is most applicable under the condition of

steady winds, it will only be solved assuming the wind stress is independent of time.

Welander (ref. 3) and others have studied a two-layered model for the oceans which

includes the Ekman dynamics assumption that the shear stress at the thermocline and

the lake bottom are proportional to the geostrophic (inviscid) velocities in either the

hypolimnion or epilimnion. In addition, at one point in their analyses the velocity in the

hypolimnion is assumed zero which allows the transport equation for the epilimnion to be

uncoupled from the one for the hypolimnion. Others such as Hamblin (ref. 4) have used

this approach in the Great Lakes. In fresh water lakes, the thickness of the friction

layer generated by the wind is of the order of or greater than the average thickness of

the epilimnion; and there is no geostrophic (inviscid) flow in the interior of the epilim-

nion. Therefore Ekman dynamics cannot be used. In this analysis the shallow lake type

equations originally derived by Welander (ref. 5) and shown by Gedney and Lick (ref. 6)
to yield good quantitative results for Lake Erie during uniform temperature conditions
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(no stratification) will be used. We also make no assumption pertaining to the hypolim-

nion velocity magnitude and will determine the effect of the hypolimnion eddy diffusivity

magnitude as well as the other governing parameters on the two-layer solution.

Since the value of the eddy diffusivities are not well established, a wide range of

values should be investigated. In order to accomplish this, a numerical solution of the

complete two-layer equations was performed. This numerical solution is presented

here. In a paper to be published an asymptotic expansion solution for the case when the

hypolimnion eddy diffusivity is small will be given.

Lee (ref.. 7) performed a numerical solution for a two-layer lake using the shallow

lake type equations. Lee’s formulation and numerical procedure is different than the

one used here and, because it allows the thermocline to intercept a variable bottom, is

much more complex. His reported results, which are for one set of eddy diffusivities

at wind shear stresses that may be too small, do not demonstrate the effect of eddy dif-

fusivity. We consider here a parameter study over a wider range to demonstrate the

effect of eddy diffusivity. In addition we are able to check our numerical results with

analytical ones in the limit of small hypolimnion eddy diffusivities.

SYMBOLS

A- coefficient defined by eq. (8)

An coefficient defined by eq. (9)

ai wot^

a.y a)Q!g(h + 0

Cv coefficient defined in appendix A
i\.

D^ Dg, --i
D, ,., Do,- ,> coefficients defined in appendix A

-1? "s f
DSCK )
d, epilimnion friction depth

d? hypolimnion friction depth

Ei, Ep,
\ coefficients defined in appendix A

E^,E^J
"F T1

1’ 2’ L coefficients defined in appendix A

FU’ ’F2^
f Coriolis parameter

5



HIM

G-. coefficients defined in appendix B where i 1, 2, 10 and j 1, 2

g acceleration of gravity

H dimensional lake depth

h nondimensional lake depth

K, Ku coefficients defined in appendix A

L reference length of lake

M number of x grid points

M,m M, + iM- epilimnion volume transport

Mnrp Mo + iMg hypolimnion volume transport

m unit normal vector to boundary

m,,mo x and y components of m

N number of y grid points

J- A ^ iA3N 3X BY

A JL ^ iJL3n 9x By

_9_ JL iJL
3n* 3x 3y

P dimensional pressure

Ri Richardson number

T dimensional temperature

U f reference dimensional velocity

u, U velocity in x direction

v, V velocity in y direction

w, W velocity in x direction

x,X->
y, Y > Cartesian coordinates

z, z j
a coefficient of volumetric expansion

"I ^ref^l

6



"2 ^ref/^
/3 length to width ratio in a rectangular basin

r ! ^ ^lFg ug + iv^
A mesh spacing

V2-i2-^3x2 ay2

^ nondimensional surface displacement

^ V^Pr
^TT eddy diffusivity of heat

v-,, eddy diffusivity of momentum

S; nondimensional thermocline position

p density

Ap (pg Pi)/p^

Pr ^1/^2
Tw wind shear stress Tw + iTW

01 (1 + i)/2

Subscripts:

h indicated derivative with respect to h

k indicates mesh point x location

I indicates mesh point y location

ref as in ^^1 epilimnion

2 hypolimnion

Superscripts:

(r) real part

(i) imaginary part

n iteration number

(-) indicates dimensional quantity
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FORMULATION

Basic Equations and Boundary Conditions

In the present analysis, the lake is considered to be composed of two layers of dif-

ferent density as shown in figure 3. In each layer, the basic approximations are that

the water density is constant, the vertical eddy viscosity is independent of position, the

pressure is hydrostatic (i.e. it is determined by water column height), and the lateral

friction and nonlinear acceleration terms can be neglected. The explanation for the den-

sity and eddy diffusivity being considered constant in each layer has already been given

in the INTRODUCTION. Gedney (refs. 8 and 9) has shown the other assumptions to be

good approximations for the Great Lakes.

Displaced lake
"\\ surface

^-_- z w -^^>,
v^- ylv ^/^^

Epilimnion p^ ’"-^- ~^I-^^~-^’^^<
< ’\/^ ^Thermocline

r-^ ^ ^Hypolimnion P^^ ^-^~~

il^. ^i^^
’’ov^>^ .^^^ "’-Lake bottom

^ij^ ^f/-

Figure 3. Cartesian coordinates for stratified lake.

Seiche currents which occur when the wind varies rapidly are very important in

stratified lakes but there are periods when the winds are essentially steady. It is during

the steady wind period that the temperature gradient at the thermocline is the sharpest

and as a result the period when the lake is best approximated by two layers. The pro-

perties of the eddy diffusivities are also known best for a steady wind. As a first step,

the analysis performed here will assume steady winds.

As is well known, the thermocline position in a stratified lake being acted upon by a

steady wind will slowly sink. The rate of deepening has been measured in Cayuga Lake

(see ref. 1) to be in the neighborhood of 15 to 30 centimeters per day. This rate is of

such magnitude that the time derivative terms in the momentum equations can be ne-
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glected and the problem is then "quasi-steady. With the steady wind restriction plus
the assumptions stated, the momentum equations and the continuity equation applicable
to each layer shown in figure 3 are

su. av. aw.
-1 + -3 +--l o l, 2 (la)
3X 3Y 3Z

ap, a2^_f V ___I 4- ----Jf^
^

+ VM^
1, 2 (2)

1 ^i 92V)
+f XL J--i + --1

n SV -1 9Pj dY ^
ap.
--J -Pig 1, 2 (3)
9Z

As shown in figure 3 the Cartesian coordinate system used has X increasing eastward,
Y northward, and Z vertically upward with the corresponding velocities being U., V.,
and W, where 1 indicates the epilimnion and 2 indicates the hypolimnion. In
these equations f is the Coriolis parameter, p. is the density, P. is the pressure,

^Mi ls ^ vertlcal eddy diffusivity, and g is the acceleration due to gravity. Effects

due to the Earth’s curvature and to the variation in Coriolis force with position have

been neglected since the scales of lakes are much less than the radius of the Earth.

By integrating the hydrostatic equation (3) vertically from the surface of the lake,
Z ^, to an arbitrary point in the epilimnion and from the thermocline, Z ^, to an

arbitrary point in the hypolimnion, we obtain the equations for the pressure in the epi-

limnion and hypolimnion as

Pl(X, Y, Z) PJT(X, Y)] p^gZ + p^(X, Y)

1 ?2(X, Y, Z) P^(X, Y)] pggZ + (?3 pi)g^(X, Y) + p^X, Y)

In most cases the effects caused by the variation of P., at the surface are small so that
they can be neglected. Combining these pressure equations with the momentum equa-
tions (2) results in

9



P^Ml-9-1^1 ^iVl Fl6-^ (4a)

az2 8N

p^M^ ^ p^^i-i)
oZ

where

A ^ ^Ap
PI

PIpr
P?

r^ v^ iVi

T^ V^ + iVg

K =K + i K
aN ax BY

^ ^- + i-^I-
9N BX BY

The aforementioned equations may be made nondimensional by introducing the fol-

lowing variables:

^^, x ^, y .J, n ^, T +/--, ^ ^ . --z-,
Sref L L L V^ ^ef ^ref

L W U , V 27^LTref ^ref
w =----, u =---, v =---, ^ref ~--^--’ ’ref ~~~’

^ref^ef ^ef uref pldlg Ap

10



"^ef ^Ml . l/2’^ ^ret ^ret
"’ ’We’ 1 V^7’ 2 PT’ ^^T ’ "^T’

With these quantities the dimensional equations (la), (4a), and (5a) become

9u, 9vi Swi

^ +-^ +.^ 0 (Ib)
Bx 9y 3z

SUo 9Vn SWn-2 +-2+ -^ 0 (Ic)
Bx By Bz

^- ^J l r .^ (4b)

a\ az2 2 an

-l. ^- l ^3 pf-^i -.^ (5b)

a| az2 2 Y311 an/

where the continuity equation (la) has been written for both the hypolimnion and epilim-

nion.

This system of equations must now be solved subject to the following boundary con-

ditions

^v ^w ^w j_ ^_l at z 0x y a. 9z

r Wg 0 at z h(x, y)

r , r^ ’ - (6)

ar d2 ^r at z ^(x, y)ar ! d2 J_ OT_2
9z g2 p^. 9z

11



niiiiiiiiiiiiiiiiriiiiiiiiiiiiiiii

w- 0 at z 0

9S 3f ^tw< u< -s + v, -"1 1 ax 1 By (7)
at z ^(x,y)

Wo Uo -^ + Vn -S-
2 2 Bx 2 Byj

where h is the depth of the lake. The w< and w? velocity boundary conditions at

z ^(x, y) are such that there is no flow normal to the thermocline. For strong enough

winds the thermocline may intersect the surface of the water with an upwelling of cold

bottom waters resulting. In this case, which will not be considered, there would be a

velocity normal to the thermocline which would reflect the volume decrease in the hypo-

limnion due to the upwelling.

In this analysis all surface boundary conditions are applied at z 0 (no wind posi-

tion) instead of at z ^. For the cases to be calculated here it can readily be shown

(see refs. 8 and 9 for error estimates for shallow Lake Erie) that evaluating the sur-

face boundary conditions at z 0 induces an error of a few percent which is only local

in extent.

Governing Equations for the Surface Displacement and the Thermocline

Equations (4b) and (5b) subject to the boundary conditions (6) can be solved for the

horizontal velocities in the hypolimnion and epilimnion as functions of the surface dis-

placement ^, the thermocline position ^, the lake depth h, and the wind stress T^.
The resulting solutions are

woi^(^-z) ua^i^+z) w wa^z ..y,

r A.e 1
+ A,e 1

+ -7- e 1
+ 2i-^ ^ z 2= 0 (8)

1 1 w 9n

E /ai sAl ""aO^) -way(h+z) /^ .A
I., ^ 2ip p +^) e 2 A.e 2 + 2ip p +il) -h ^ z ==

^Bn Sn/J ’’Van Bn/
(9)

where
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^/a ^ /, , ^2. ^\ ^/^ , ^1 K \9n 9n/ \ / K \8n/ \ /

w ^i r/ -2a2\ / -2a2\1+J_ 6- 1 6 ^- K l + e 2

a> K L\ / A /J

9 w .3’! ^ 2ip r/ 2ai \ / -a,\ / 2a, \1 /. .A
Ag 2^^-6-- --1: ^ ^ l 1 e ^ ^ e ^ l pi +ii)

w K K L\ / \ / V /J \9n Bn/

-ao/ 2a, \ /aA2i e 2 g 1 iVii\
K \ /\Bn/

a< 0)0’^

an Ct>Q’o(h + ^)

c. =-1--1
2

s -^-^Pr

/ -2a.,\ / 2a,\ / -2a.^ / 2^ \
K K^ + e ^(l + e 1) (l e "He 1- 1\

The w, and w? velocities can readily be determined, respectively, by combining

equations (Ib) and (8) and equations (Ic) and (9).
The velocity equations (8) and (9) and the continuity equations (Ib) and (Ic) can be

integrated vertically to give

M^ M^ + iM^y J^ 0-^ dz DlTW-^ E^ + F,^ (10)

^T ^x + "^y /’^ Q’2^ 2 dz ^^ + ^f + ^f (n)
"-h on dn
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BM^ BM.--- "--- ^ (12a)
3x By

BMg 9M.,_2x +_-2y 0 (13a)ax 3y

where the coefficients Di, E.., Pi, Dn, En, and F? are functions of the local depth

h(x, y) and the thermocline position ^(x, y), and are given in appendix A. The quantities

Mirp and Mnrp are respectively the volume transport in the epilimnion and hypolimnion.

Equations (10) to (13a) can be combined to obtain two coupled equations for ^ and

C. Equations (12a) and (13a) are equivalent to

/3M^\
Real --1J- 0 (12b)

\ an* /

/3M^\
Real --"y-\= 0 (13b)v 811* /

where

-JL JL i-9-
3n* Bx 3y

By substituting equations (10) and (11) into equations (12b) and (13b) we find the two equa-
tions for ^ and ^ are

FW^; + E^ +^r^ Eg)-^ F^ ^^ F^l!1 + F^it + r^) r^liiL ^ ax ^ 9y ]h ax ^h ay ^ ax x ^ y ^J ax

+ [E^^ + E^) -^ F(1,) ^ + F^ I11 + F^^ + r^ + ^D^l 11L ^ 3x ^ By ]h Bx Jh By ^ By x ^ V ^ J By

. IE^ . E.(1) I11] -^ fE(1) ^ E^ ^1 ^ . r^fD^) ^ + D(1) ^1L lh Bx ^ ByJ Bx L 9x ’h Byj By x [ Jh Bx ’h ByJ

^^i ^13 0 15 2 (14a)

14



where the superscripts on the coefficients indicate the real or imaginary parts and sub-

scripts and h indicate the derivative of the coefficient with respect to ^(x, y) or

h(x, y). The derivatives E^ ’, E", and so forth are given in appendix A. Equa-

tions (14a) are solved subject to the boundary condition that the volume transport normal

to the shore boundary is zero. Thus, if m< and my are the x and y components,

respectively, of the outward unit normal m to the boundary, then for any closed body of

water the boundary conditions are

M^m^ + M ,mg 0 1, 2 (15a)

Equations (14a) and (15a) are the boundary value problem for the solution to a com-

pletely enclosed two-layer lake where the thermocline does not intersect the lake bottom

or the surface of the lake.

SOLUTION OF THE GOVERNING EQUATIONS

In the previous section the mathematical model for the circulation in a two-layer

lake was formulated. The model developed requires the solution of two coupled second-

order nonlinear differential equations for the surface displacement ^ and the thermo-

cline position ^. In a paper to be published, a partial analytical solution in the form of

an asymptotic expansion will be given for the case when the vertical eddy diffusivity for

momentum v-^y approaches zero. In this report we use finite differences to obtain a

solution for equations (14a) subject to the boundary conditions (15a) for parameter values

which do not permit use of the asymptotic solution.

y

N T--------[--1
N-I ----\

-] A

-^ h

: ~~3 ^ ^^;_ZZZ3 / __,
2 3 k M-l M

Figure 4. Numerical grid for rectangular basin.

15



The point successive underrelaxation iterative method was used to solve the govern-

ing equations in a rectangular domain. The equations were linearized about the previous

iteration by a Taylor series expansion. The linear finite difference equations at a grid

point in the interior for the grid pattern shown in figure 4 are

/-" c1"-1 A?11"1"1 ?n+l .<- ^n \
Ur)(^ \1 ^k+l^ -^k-1^ ^k, l + ^, l-l + ^k, ;+1

1^ ^, l)\^--------- ^ )
/n ,n+l 4pn+l in+l n \ n- [^(C^1- ’ ^’1-1- ’ ^ k ^-l ^7G^,

^^a^e^^ i l- 2^,
The G coefficients are listed in appendix B and are all of the form

( .n cn+1 ,;n ,;n+l in j.n+1 in pn+1 \
^ .n ^1, 1 ^-1, 1 ^, 1+1 ^, 1-1 ^+1, 1 ^-1, 1 ^, 1+1 ^, l-l\

^n -Ti >lr /’ -----------------’ -----------------’ -----------------’ -----------------)

^ 1-! k’ 1- 2A 2A 2A 2A /

Here the previous and present iterations are indicated, respectively, by the superscripts
0

n and n + 1. In these equations central differences with accuracy of order A were

used for all derivatives except the first derivatives enclosed in the brackets [ ]{A,. For

these derivatives either a forward or backward difference with accuracy of order A

were used depending on which one increases the absolute value of the combined coeffi-

cient for ^n+l or ^+1 Using forward or backward differences to increase the mag-

nitude of the diagonal term in the coefficient matrix was necessary for the iteration

scheme to be stable.

For grid points along constant x and y boundaries, the finite difference equations

for the equation (15a) boundary condition are
f

p 1, 2

^i + ^i ^1 ^1 + G^ ^ ^^ N 1
L^Jf L^Jf ^XJf/b l^yJf/b

X U

(15b)
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1 1, 2

E^r^l p(r)fai1 E(i)["9i:1 p(i)fai1 G f"-1-1 G
k M

Hb Fj bib ^ t4/b U/b ^^ z G8j 2 _^ N 1

L

(15c)

3 1, 2

E^fct . FfN . EfN . F^N . Gg.^^ G^ , 1 1

byJf ] LsyJf L^Jf/b Ldf/b 2 ^ k ^ M i

ly o

(15d)

1 1, 2

^W , (r)]-^ , (Dkl , (i)[ii1 . G^ G^ Z N

Nb bxlb LsxJf/b Lsdf/b OJ 2 < k ^ M 1

ly i

(15e)

where

E ion jn+l
3^ ^k+1, Z ^k, Z
ax|^ A

in+l ;,n
1-^1 "k, ? ^k-l^
LsyJb A

The Gg. to G-.Q. coefficients are given in appendix B and are functions of the n

iteration value of , and C,. For the derivatives tangential to the boundary in equations
(15b) to (15e), either forward or backward difference was used depending on which one
made the total coefficient of ^, and ^ maximum. Equations (15b), (15c), (15d),
and (15e) were used respectively for the corner points 1, 1; M,N; N, 1; and 1,M with

the proper difference equation substituted for the first derivatives tangential to the bound-
aries.
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Equations (14b) and (15b) to (15e) constitute a set of equations for f^ and t^ at

a mesh point. Every iteration, the equations -were solved simultaneously for ^ ^
and

^n+l at every grid point. The standard relaxation procedure was then applied with the

relaxation coefficient usually taken to be 0. 5. In performing the calculations it was nec-

essary to have at one point on the boundary a specific t; and , value. In order to ac-

complish this the difference between the new value at the boundary point and the desired

value was either subtracted or added to the entire and ^ field after each iteration.

The iteration process was continued until the maximum ^ and ^ relative error between
4

successive iterations at any point was less than 1. 0x10

It should be realized that the equations we are solving are highly nonlinear. The

numerical procedure used to solve the equations (particularly the use of underrelaxation

and the use of forward or backward differences to make the solution matrix diagonally

dominate) was not known a priori but was developed empirically. Because the coeffi-

cients in the equations that must be calculated every iteration are so complicated, each

iteration takes a considerable length of time to perform. For a grid mesh of A 0. 1

(121 grid points over the lake region) a typical solution takes 20 to 40 minutes to obtain

on an IBM 7090 system if the poor initial and ^ distributions of a constant are used

to start the calculation.

RESULTS

The finite difference equations (14b) and (15b) to (15e) were solved for the position

of the thermocUne ^ and the position of the lake surface Using the solutions for ^
and C, equations (8) and (9) determine the hypolimnion and epilimnion horizontal veloc-

ities.

Effect of Eddy Diffusivities

In this section the effect of variation of the hypolimnion and epilimnion eddy diffu-

sivities will be discussed. The results to be presented will all be for a constant depth

square basin with the following parameter values being held constant:
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Basin length, L, km 96. 6

Basin depth, H, m 62. 6

Epilimnion temperature, C 22

Hypolimnion temperature, C 4

Ap 0. 00203

p 0. 9977969
T
Wind velocity at 6 meters above water surface, m/sec 5. 2

T^, dynes/cm2 -0. 914
j\.

T", dynes/cm2 0. 0

A drag coefficient of 0. 00273 as proposed by Wilson (ref. 10) was used to determine the

wind shear stress for the 5. 2-meter-per-second wind. The values listed previously are

typical for the central basin of Lake Erie.

Case 1

In the first case to be discussed the eddy diffusivities used in the epilimnion and

hypolimnion are respectively i^,,, 16. 8 square centimeters per second and v-^y

4. 2 square centimeters per second. These eddy diffusivities correspond to friction

depths of d., 18.2 meters and dn 9. 1 meters. The wind drag coefficient and y,,-,

value used here are the same as the ones used by Gedney (refs. 8 and 9) for current

calculations in Lake Erie with uniform water temperature (no stratification). With

these values for y,,, and the drag coefficient, the calculated velocities for Lake Erie

agreed very well with measurements. The epilimnion in our model is considered to be

of uniform temperature and for the cases calculated here will have an average thickness

of approximately 20 meters. Since 20 meters is also near the average depth of Lake

Erie, the ii-,,-, value should be very similar to that used in the Lake Erie calculations.

The value of v-^n in this first case is somewhat arbitrary. Results for different values

of v^y will be reported in subsequent cases.

Constant thermocline (0 contours when !/< 16. 8 and Vy^ 4. 2 are shown in

figure 5(a). The thermocline assumes a shallow depth at the upwind end of the lake and

a large depth at the downwind end. There is very little tilting of the thermocline in the

cross wind direction. At a constant x station, the thermocline is deeper in the center

of the lake than near the shores. The value of 9^/9n + 9^/3n throughout the basin is

very close to zero. The thermocline therefore assumes a position so that the horizontal

pressure gradi&nt 9Pn/9N in the hypolimnion is close to zero. With 3Pn/9N being

small, the velocities in the hypolimnion should also be small.
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(c) Horizontal velocities at 3.6-meter depth, (d) Horizontal velocities at 6.7-meter depth.

Figure 5. Circulation in a two-layer basin of constant depth. Lake length, 96.6 kilometers; \iy^ 16.8 square centimeters per second; v^Z’4-2
square centimeters per second.
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(g) Horizontal velocities at 20-meter depth, (h) Horizontal velocities at 26-fneter depth.

Figure 5. Continued.
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(i) Horizontal velocities at 32-meter depth.

Figure 5. Concluded.

In figures 5(b) to (i), the horizontal velocities are given at the lake surface and at

depths of 3. 6, 6. 7, 10. 0, 15. 0, 20. 0, 26. 0, and 32. 0 meters. The dashed line included

on some of the velocity plots is the intersection of the thermocline with the horizontal

plane at that particular depth. The velocity patterns down to 10 meters are similar to

those which occur in a homogeneous lake. The Coriolis force causes the deflection of

the surface velocities to the right of the wind and a clockwise rotation of the current

vector with depth. The effect of the epilimnion thickness being smaller at the upwind

end of the lake causes the upwind velocities at the surface (fig. 5(b)) to be more in the

direction of the wind. At depths closer to the thermocline, the epilimnion velocities

rotate even more clockwise until they are in a southerly crosswind direction. As we go

deeper to a region below the thermocline, the velocities become very small and aline

themselves to ttfe right of the wind. The velocity magnitudes at 32 meters are only 2 to

3 percent of those at the surface. Note that the apparent increase in velocity between

figures 5(f) and (g) only reflects a scale change.
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(c) Horizontal velocities at 3.6-meter depth, (d) Horizontal velocities at 10-meter depth.

Figure 6. -Circulation in a two-layer basin of constant depth. Lake length, 96.6 kilometers; v^- 67.2 square centimeters per second; v^ 16.8
square centimeters per second.
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Figure 6. Concluded.
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Case 2

Results are given in figure 6 for the same parameters in case 1 except v^ and

VM2 are q^^^^d to be, respectively, 67.2 and 16. 8 square centimeters per second.
For comparison purposes the same thermocline depth at the upper righthand corner have
been used in both cases 1 and 2. As shown in figure 6(a) the larger eddy viscosities pro-
duce a greater cross-wind thermocline tilt and maximum thermocline depth. As shown
by figures 6(b) to (d) the velocities in the upper part of the epilimnion are approximately
one-half that of the case 1 results. This is the same order of magnitude velocity change
that occurs when the eddy diffusivity for a shallow (H/d- < 1) homogeneous lake is quad-
rupled. The significant result is that the velocities below the thermocline are larger
than those in case 1 reflecting the increase in momentum transport across the thermo-
cline because of the large eddy diffusivities.

Case 3

The effect of changing v-^ as z^p is held constant is shown in figure 7 which is

a plot of the thermocline depth along the y 0 axis. With v-.,. 16. 8 square centi-
meters per second, plots are shown for v-^ 4. 2 and 1. 05 square centimeters per
second. We see, as v-^ 0, the difference between the thermocline depth at x 0
and x 1 becomes less. In addition, as v^ 0: (1) the. cross wind tilt of the thermo-

Or-

’5
Wind 15.2m/sec)

g- r-Approximate no wind thermocline ---’’’’^^^^Q-20 ^____ position for v^’ 0 case -’’’"^f^^^
v^2’ e^/sec ^^’’^-S^^^

-25- \ 0(Eq. (16)> ^-^’^"^f^^^

-35 L
_________

0 10 20 30 40 50 60 70 80 90 100 X
Distance, km

Figure?. Thermocline position at y’O for u^=0.0, 1.05, and 4.2 square centimeters per second and u,n
16.8 square centimeters per second.
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Figure 8. Circulation in a two-layer basin of constant depth. Lake length, 96.6 kilometers; Vmi 14.8 square centimeters per second; uo 1.05
square centimeters per second.
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dine becomes smaller; (2) the thermocline depth distribution along x 0 and x 1

becomes independent of y; and (3) the thermocline distribution as a function of x along

y 0 and y 1 become the same. These characteristics are shown in the figure 8 (a)

thermocline contour plot for the case when Vy,n 1. 05 square centimeters per second.

The velocities at 15, 20, and 26 meters are shown, respectively, on figures 8(b) to

(d) when i/,,- 14. 8 square centimeters per second and v^ 1. 05 square centimeters

per second. The velocities below the thermocline can be seen to be smaller than those

in case 1 where v-^i 14.8 and v^y 4.2.

Comparison With Asymptotic Limit

As ^,,,9 0 it is possible to construct an asymptotic expansion of the governing

equations (10) and (11) in terms of the small parameter

K ^-L
d^

A zeroth-order solution for the thermocline was obtained and will be completely given

in a future report. The zeroth-order thermocline position along the boundaries of a

rectangular basin with T^ 0 and constant T^ < 0 is

<c. ~\

^ constant at X L

/ -^ i- 2V ----^ + kJ at X 0
i .. V (P2 Pi)g r - (16)

/2(X DT-^1/ ------X+ \S;.\" at Y 0, ^L
V (?2 ^L -J

where f3 is the width to length ratio of the basin. This solution predicts the zeroth-

order thermocline position on the boundaries independent of f3, v^, ^3, and h. It

-ao/2(h+^)
should be noted that the asymptotic solution is only valid when e K For

v y s 1. 05 square centimeters per second, this approximation is valid provided the
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thermocline never approaches within a few meters of the lake bottom. The asymptotic

solution interior to the boundaries does, however, depend on /3, ^ixi-i, v-n/fj, and the

lake depth h.

Included in figure 7 is a plot of equation (16). The numerical solutions approach

the asymptotic results as v-^ry decreases. It should also be noted that the zeroth-order

expansion gives the result that

ii +i^ o
9n 9n

in the entire lake domain. The numerical solution gives 9^/9n + 9^/9n of order 10"
for v-^,y 1. 05 square centimeters per second. This agreement between the zeroth-

order asymptotic and numerical solution is good since the first-order term in the asymp-
totic expansion would be of this magnitude.

In figure 9 the thermocline positions for the zeroth-order asymptotic solution and

the Vy 4.2 square centimeters per second numerical solution are given when the epi-

limnion water volume are approximately equal in both cases.

Or-

Wind (5.2m/secl
-5

-10- //

; - ^& Approximate no wind thermocline ^^^^,’ position for both cases ^^f^
Vino, cm^/sec ^^>^’^

-30 -/-^^^^^O’O
--’"’^ 4.2

0 10 20 ’30 40 50 60 70 80 90 100 ’X
Distance, km

Figure 9. Thermocline position at y =0 for v^’O.O and 4. 2 square centimeters per second and ^^’ 16.8
square centimeters per second with equal epilimnion volume.
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(c) Horizontal velocities at 10-meter depth, (d) Horizontal velocities at 20-meter depth.

Figure 10. Circulation two-layer Basin of constant depth with river flow. Lake length, 96.6 kilometers; M.8 square centimeters per second- u.,
square centimeters per second.

29

I



f_ 7.1. 1’s mi
Distance 1-m--r-i ,’

ic ;i km

Current =-. ft/sec

magnitude ^~~i 21. cm/sec

Wind

I I I I \l /

1 I I I ’1 /

1 I I I 1 /

^ 1 1 i i / \
i I i I \ ^
i I I i 1! ^
i I i I U ^

1 i i i /

I i I if ^
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Figure 10. Concluded.

Effect of Varying Other Parameters

The effects of varying the hypolimnion and epilimnion_eddy diffusivities has been

given in the previous sections. The effect of changes in T^ L, Ap, and epilimnion water

volume can produce large changes in thermocline slope. The qualitative effects of these

parameters are easily deduced from the asymptotic solution given in equation (16) and

were confirmed by the numerical solution for the case when Vn 16. 8 square centi-

meters per second and v-i 4.2 square centimeters per second.

Changing the lake depth produced no significant change in the thermocline position

until the distance between the lake bottom and the thermocline is less than the hypo-

limnion friction depth do. When H + ^ is made less than dg for a constant depth

basin, the thermocline slope increases until the thermocline intersected the lake bottom.

Including a bottom slope where H + , was made small did not change this behavior.

A plot of the thermocline position for the same parameters as case 1 shown in fig-

ure 5 but including an east to west river flow of 5380 cubic meters per second is shown

in figure 10. This river through-flow which is similar in magnitude to that in Lake Erie

occurs in the epilimnion only. The main effect of the through-flow is to increase the

30



crosswind tilt of the thermocline. A through-flow of equal but opposite direction would
produce an opposite crosswind tilt of the thermocline. Some velocities for the east to
west through-flow are included in figure 10. The river flow effect on the velocities is

quite small being most significant at the upwind end of the lake where the epilimnion
thickness is the smallest.

CONCLUSIONS

The solution of the two-layer lake equations in a rectangular basin with a uniform

5.2-meter-per-second steady wind was solved for the case when the thermocline does

not intercept the bottom or surface of the lake. The velocity and shear stress was made

continuous across the thermocline. The density difference between the two layers was
assumed to be 0. 00203 gram per cubic centimeter. The following conclusions were
determined from the results of the numerical solution:

1. The major tilt of the thermocline occurs in the direction of the wind with the

maximum thermocline depth being at the downwind end of the lake.

2. In the Northern Hemisphere, a small crosswind tilt of the thermocline occurs

with the depth of the thermocline to the right of the wind being less than that to the left.

3. As the eddy diffusivity in the hypolimnion is decreased the thermocline tilt and

hypolimnion velocities decrease. For the range of hypolimnion diffusivities investigated

(1. 05 to 16.8 cm /sec), the pressure gradient in the hypolimnion was always found to
be small (of order 10 ).

4. The shape of the thermocline was found to be weakly dependent on the length to
width ratio and depth of the lake. As a result, most of the results are given for a

square basin.

5. As the hypolimnion eddy diffusivity is reduced, the numerical solution approaches
an asymptotic solution which assumes the ratio of hypolimnion to epilimnion diffusivities
to be much less than one. The zeroth-order asymptotic solution predicts the thermo-

cline slope to be directly proportional to the wind shear stress and basin length and in-

versely proportional to the density difference of the two layers and the local thermocline

depth.

6. Since the crosswind variation in the thermocline depth is small, the thermocline

can be approximated by a cylindrical surface generated from a single curve.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, March 22, 1972,
136-13.
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APPENDIX A

COEFFICIENTS FOR THE DIFFERENTIAL EQUATIONS
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2S K Kc^ L 1 2 \ 2 2 V 2 1]

E.,a)C^- o, / C 2air -a9 / -2a.^\
E^ -2-^ + 2-l 2p Ap 2a,e ^e 2 1 fl + e 2
"s K K \ r f 1 L 2 ^ /]

/ -an -2a9\ / 2a< \-1 r
+ a2(-e + e n6 1)} + ^ {a2K + ^2 + ^K

-agf / 2a, \ 2a.-1 2a, 1\
+ 2e cro e 1 1 2ff-e ^ ^. O a’ie ^K. 1)^L "\ /

1 J 1 T J/

^ 4i r / ^l \/ -^ -2a9\
F.t E., c^F., Eg) ^c 41 ^2 e 1 1 -e 2

+ e 2
"s "s 2 K K [ 2\ A /

2a.r -a? / -2ap\-11
+ 2Q’-e e ^ ^ fl + e ^ ^1 L 2 ^ /jj

Q’2 r a, -2a /iD, \-1
DI, =-’- 4/< e ^e ^- K. -^ lilh KO) L T ^ 2 /J
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-2a.,r / 2aA / 2a, \-| ^i,-
K, -2e ^ fl + e 1) + (e ^ llL-^-^h L ^ / \ /J ^ ah

Kh^an 4iK_Q!n r/ 2a< \ / -2ao -agNI
Eih -^ ^i ^i^) .-^^ ^ l^- p. Ap e ^ p.e ^/2a, \

2iaoK_ e 1 1] [ -2ao K, / -2ao\1
F,, E,, +--2^----L 2e ^-^ (l + e 2)lh lh K L h \ /J

Q!? r 4 / -an -2ao\ a{]
D., -2 DoK, co +-4 (-e "+ e e 1
2h K |. cA / J

dy r r -ap /2a. \ "1
E2h \-KhwE2 + 2iPr\2e e l + K^ + D + K

K- ^ L V / -1

/ -a, -2ao\ /2a, \-1
+ 4ip^. Ap -e "+ e (e i- 1 ^

K, 4idy / -2sLy -a^/ 2a< \

F2h E2h a2(F2 E2)^l- -^ (e e ^ 1)
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APPENDIX B

COEFFICIENTS FOR THE DIFFERENCE EQUATIONS

In this appendix the coefficients D_, E_, F_, and their derivatives are all evaluated

at ^n and the local h value.

G<_ E^i^ E.^ .. 2F(?)iin + r^y r^ 4. F^ ^ + pS1,^i] .]^ ax ^ By ^ ax x j^ y ]s 311 ax ]h ay

G,, E^^n . E^) ^n + 2?^ ii" + r^i) ^ r^D,^ + F^) i11 F^ ^2] ]^ 9x J^ 3y ^ By x ^ y ^ ^ By ]h Bx

^i ^^S^ ^ + E^ 8^ - E^ 9h -. E(1,) ^3] ^ Bx ^ By ^ Bx ^h By

G E^) ^n E(i) ^n + E^) ah F^ ah^J ^ ^ ^ ^ ’ ^ ^y ^h ^
G^ F^n , E^V^n . fE^) ^ E.^ ^n . F^.^ . ^D(^) ^D^l ^j J^ j^ |_ ]^^ ax .1^^ ay 3^ ax x -i" y ^^J 9x

. [E(|) ^ . Eg) J^ . F.M ii" . r^ . A^l^n
L ]ss Bx )ss By lss By x )ss y ’^J By

["Fd-) 3h p(r) Bh] B^" L(r) Bh p(i) Bh1 B^[ ^Tx ^ ^yj^x’ r^ ^
]h^ "3x1^7

+ k% ih E^ ^l-^1 - \^l 9h ^ ^h\9^]N Bx lh^ ByJ Bx L ]N 3y ]h^ 3xJ By

+ TW^D(r) ah
+ D(i) ^1 + T^D^ 8h D(i) ^1^ l. ^ ^ ^ ^yj 4 ^ ^ ^ ^J
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G,. FMM .f^f JEW^ . E.^ ^1^" . [EM^ EO ^|^n
6’ iS \ 3x / \3y / L ls 3x ls 3yJ Sx L " Sy )s SxJ 3y

^’^ - ^l-^^ ^i] - ^, .
where

g2g(r) g2g(r)
ES^ ’"^r’ E^ ’"ahir’

and

.n ,:n+l
3^ ^+1, 1 ^-1, 1

3x 2A

.n cn+1
3^ ^k, l+l ^k, I-1

3y 2A

n ,:n+l .n ,:n+l ^n

V2?" ^k+l, l + ^-l, l + ^, l+l + ^k, I-1 ^k, Z

A2

The 3^/8x, Q^/Sy, and V2^" difference equations are the same as for ^.

G,. r^) T^^) . E^ii" E^ . F^ ^ F^^117] ’x1^ ’y j^ ]^ g^ ^ gy ]^ 9x ]^ ay

^r ^-^!^ ^, .
Go. T-DS1) . A^ . E^^11 . E(1)-^1 . F^ ^ . ^ ^9^ x ^ y ^ -i? ay ’s ax ]s ay ls ax

"loi ^!" ^’ - 0^, .
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aE! f ^T-(R) r /Cy \ / 2ai \ 2a.:\’}
E-,, -2io’, + 2iK ^Ap p DSCK +^--- {-K- + a.,) fe x 1 + 20!^ 1 ^s

^
r ^ r K L I K 2/ \ 1 JJ

7 2a^ V -2aV
i e l] 1 + e

DSCK =A__ \_____A_____Z.
w a^ K

r 2a, / -2a.,\ -2a.,/ 2ai \ Cy 2a, \ / -2a.,V1
DCCK =1- 2o-^e ^l + e 2] 2^6 ^e 1 1 -K (e 1 l)(l + e 2

F^ E^ + 2iQ!< 2iKj)SCK

"^K 4pal ^ -a2 -2a? / \ IDg ---^- i^ e ^a o, + e ^o’, 1 a.} 1 a,\s K Kw L \ 2 7 2 ^
90)0^ / F 2a,r -a, / -2a.,\"l

^ ^^^^[^ ’p i r 6 )J
/ -a, -2ao\ / 2a. \1 f

+ ff2 -e "+ e "e 1 l l + p^, ^gK + (a^ + DCg;

-aof / 2a, \ 2a.-] 2a, 1\
+ 2e o^ e l- l 2Q’^e l- 4. 0 Q!^e ^K^ I)^

C,,- 4, r / 2a, \ / -a.y -2a.y\

^ ^ -(^ ^-’- ^ H6 l)(-e + e
K K I \ /\ /

2a<r -ao , / -2a2\11
+ 2a-e e 1- (l + e l1 L 2 ^ /1J

o^ r a, -2a? /iD, \1
D<, =^- 4/c_e ^e 2 K, ^ l}\lh KO) L r h\ 2 f\
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-^r L 2a^ / 2a! i\l 1 aK
K, -2e K^ l + e + e 1
h |_ T\ ] \ j\ a^ 9h

^ 5? (E, .^^P l)(- P. .P e-"2 ^-^
^ ^l^ 2’"2^1’ ^^2 ^^1 -’2^lh lh K L h \ /J

"2 r 4 / ^2 "^ al^
D^ -2 \DyK^ + ^ ^-e ^ + e e 1

2h K L ^ V / -I

a. <- r -a<, /2a-, \ "|

^ {^rt + ^J26 e l- l) + Kh(a2 + l) + KJJS. L \

/ -a. -2a?\ /2a. \1
+ 4ip^ Ap (-e 2

+ e ^(e ijj

K,, 4iay /-2ao -a^/ 2a< \

Foh ^oh ^ 1^ -1^ --2 6 e e 1
2h 2h 2 ^ ^ ^ K \ A /
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APPENDIX B

COEFFICIENTS FOR THE DIFFERENCE EQUATIONS

In this appendix the coefficients D_, E., F., and their derivatives are all evaluated

at ^n and the local h value.

G^ E.^ E^ + 2?^ + r^DJf) T^ + F^ .. F.^i] ,]S ax ]s ay 3S ax x ls y ]s J" ax ’" ay

G,. E^ 9^ . E^ ^ + 2F(r)^n + r^i) + r^ - ^) ^ FS1) ^"’ )s 9x ls By ^ 3y x )s y ls )h By ]a Qx

G,, E.^ ^n + E.(1) ^ . E^ 3h
+ E?,) 9h

3] ]^ 3x ^ By ^ Bx ^h 3y

G,. E^) ^ E(i) ^n+ E^) ^ E^4] ^ By ^ Bx ’h By ^ Bx

G,. F.^V2^ . ES^V2^ . \E^ ^ E% -^ . F^-lt11 . T^) ^D^^5] ^ s ^ L ’^ 9x 1^ By 3^ Bx x ]^ y ^^ Bx

. fE.O) ^n . E.^) -^n . F.^ ^n .^ . ^D^l ii"
L lss Bx )ss By )ss By x ]ss y ’"J By

L(r) Bh (r) Bhi B^ f (r) ^h p(i) ^hl^11L i^ ^ i^ ^yJ’Bx’ [ ^ By 1^ BxJ By

. [E(1) ^ E^ ^1 ^ . fE}1-) ^ E(1) ^h\9^]h^ Bx M ByJ Bx L ]N 9y ]N 9xJ By

-wL(r) Bh p(i) Bhi -wL(r) Bh ^(i) _Bh1
x p^ ^ ^ ^yj y P^ ^y ^ 9xJ
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G p(r) /a^f /^"f ^
L(r) ^ ^ E^I ^ +\E^ ^ E^lil ^^J F^ ^ [^ ) [ ^ ax ^ ayj ax [ ^ ay ^ axj ay

wL(r) Bh p(i) ah1 -wL(i) Bh r)(r) Bhi Q ,n
Tx |> "ax + D^ "ayj + "y L0^ "ax D^ "aj G5^ l

where

,2p(r) .2g(r)
E(r) ^_ E(1-)
"iti: -------’ -ih? ~------’^ ,,,2 ]hs Bh 3^d^

and

.n ,:n+l
9^ ^k+l^ ^k-l^
Bx 2A

.n ,:n+l
5^ ^, l+l ^, 1-1

By 2A

.n ,:n+l .n ,:n+l ^n

^2,n ^k+l, ^
+ gk-l, ^ ^k, ^+1 "^k, Z-1 ^k, ;

A2

The a^/Bx, S^/By, and V2^" difference equations are the same as for ^.

7i ^ ^+ ^^-^ ^’^ + ^’^ ^-^7] x ^ y J^ ],
^

], 9y ]^ 9x ^ ay

^ ^’’-^^j^ i

^i ^ + ^I’ + E,? sn + ^’t’ ^ ^(r) ii" . F||’ ^9] x 3^ y j^ ^ gy J^ 9x )s ay ^ 3x

r- Wr,(i) -WrJr) r" t11^Oj ^^- ^^- ^A Z
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